I am a professor at the Department of Biostatatstics and Bioinformatics, Emory University. My research has been mainly focused on bioinformatics and computational biology. I'm particularly interested in developing statistical methods and computational tools for interpreting large scale genomic data from high-throughput technologies such as microarrays and second generation sequencing.
I am also interested in general machine learning, pattern recognition and large scale data mining methods with applications to biomedical data. I collaborate closely with researchers working on epigenetics to characterize DNA and different types of histone methylations.
For more details about my research please visit my personal webpage at http://haowulab.org.
Contact Information
1518 Clifton Rd., NE ,
Atlanta , GA 30322
Phone: (404)727-8633
Fax: (404)727-1370
Email: hao.wu@emory.edu
Areas of Interest
- Bioinformatics
- Biostatistics
- Epigenetics
- Genetics
- Genomics
- Mental Health
- Statistical Modeling
Education
- Ph.D. in Biostatistics 2010, Johns Hopkins University
- MHS in Bioinformatics 2010, Johns Hopkins University
- M.S. in Electrical Engineering 2000, Iowa State University
- B.S. in Electrical Engineering 1996, Tsinghua University
Publications
- Li Z, Wu Z, Jin P, Wu H , 2019, Dissecting differential signals in high-throughput data from complex tissues , Bioinformatics, 35, 3898-3905
- Li Z, Wu H, 2019, TOAST: improving reference-free cell composition estimation by cross-cell type differential analysis, Genome Biology, 20,
- Hao Feng, Peng Jin, Hao Wu , 2018, Disease prediction by cell-free DNA methylation , Briefings in bioinformatics, ,
- Zhijin Wu, Yi Zhang, Michael L Stitzel, Hao Wu, 2018, Two-phase differential expression analysis for single cell RNA-seq , Bioinformatics, ,
- Xiaoqi Zheng, Naiqian Zhang, Hua-Jun Wu, Hao Wu , 2017, Estimating and accounting for tumor purity in the analysis of DNA methylation data from cancer studies, Genome Biology, ,
- Park Y, Wu H, 2016, Differential methylation analysis for BS-seq data under general experimental design, Bioinformatics, 32(10), 1446-1453
- Wu H*, Xu T, Feng H, Chen L, Li B, Yao B, Qin S, Jin P, Conneely KN , 2015, Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicate, Nucleic Acid Research, ,
- Feng H, Conneely KN, Wu H, 2014, A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data, Nucleic Acid Research, 42(8), e69
- Wu H, Wang C, Wu Z, 2014, PROPER: Comprehensive Power Evaluation for Differential Expression using RNA-seq, Bioinformatics, ,
- Wang T, Wu H, Li Y, Szulwach KE, Lin L, Li X, Chen P, Goldlust IS, Chamberlain SJ, Dodd A, Gong H, Ananiev G, Han JW, Yoon Y, Rudd MK, Yu M, Song CX, He C, Chang Q, Warren ST, Jin P , 2013, Subtelomeric hotspots of aberrant 5-hydroxymethylcytosine-mediated epigenetic modifications during reprogramming to pluripotency, Nature Cell Biology, 15(6), 700-11
- Wu H, Wang C, Wu Z, 2012, A new shrinkage estimator for dispersion improves differential expression detection in RNA-seq data, Biostatistics, 14(2), 232-43
- McDonald OG, Wu H, Timp W, Doi A, Feinberg AP, 2011, Genome-scale epigenetic reprogramming during epithelial to mesenchymal transition, Nature Structural & Molecular Biology , 18(8), 867-74
- Wu H, Irizarry, R.A., Bravo, H.C., 2010, Intensity normalization improves color calling in SOLiD sequencing, Nature Method, 7, 336–337
- Wu H, Jaffe HA , Feinberg AP, Irizarry RA , 2010, Redefining CpG Islands Using a Hidden Markov Model, Biostatistics, 11(3), 499–514
- Wen B, Wu H, Irizarry RA, Shinkai Y, Feinberg AP, 2009, Large histone H3 lysine-9 dimethylated chromatin blocks distinguish differentiated from embryonic stem cells, Nature Genetics, 41, 246–250